
Visualization of Multivariate Density Estimateswith Level Set TreesJussi Klemelä ∗AbstratWe present a method for visualization of multivariate funtions. Themethod is based on a tree struture, built from separated parts of levelsets of a funtion, whih we all level set tree. The method is applied forvisualization of estimates of multivarate density funtions. With di�erentgraphial representations of level set trees we may visualize the numberand loation of modes, exess masses assoiated with the modes, and er-tain shape harateristis of the estimate. We present simulation exampleswhere projeting data to two dimension does not help to reveal the modesof the density, but with the help of level set trees one may detet the modes.We argue that level set trees provide a useful method for exploratory dataanalysis.Keywords: Cluster analysis; Exploratory data analysis; Mixtures; Mode dete-tion; Multivariate data.1 IntrodutionNonparametri density estimators have been suesfully applied in exploratorydata analysis for one and two dimensional data. For example, it is possible todetet modes by the inspetion of one and two dimensional density estimates.For more than two dimensional data the di�ulties with visualizing density esti-mates have often hindered the appliation of nonparametri density estimation.We onstrut a method for visualization of multivariate funtions whih an in-rease usefulness of multivariate density estimates in exploration and mining ofmultivariate data.We present a method of visualization whih is based on the level sets of thefuntion. A level set is the set of those points at whih the funtion exeeds agiven value; level set of funtion f : Rd → R at level α is de�ned as
Λα =

{

x ∈ R
d : f(x) ≥ α

}

. (1)
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We assume that the funtion to be visualized has only a �nite number of di�erentlevel sets, in other words, it is pieewise onstant. If the funtion is not pieewiseonstant, then we will approximate it with suh a funtion, as will be done forkernel estimates with a ontinuous kernel.A level set tree is a tree struture formed by taking as root nodes the separatedregions of the lowest level set of the funtion. The hild nodes of a given nodeorrespond to the separated regions of a part of the level set whose level is onestep higher than the level of this parent node. Thus the disjoint regions of a levelset will be startpoints for the di�erent branhes of the tree.In density estimation we are interested in the shape of the density funtion:the number and loation of modes, relative size of the modes, skewness, kurtosis,tail behaviour of the funtion, and so on. The level set tree will re�et the modestruture of the funtion, beause di�erent branhes of the tree will orrespond todistint modes (loal extremes) of the funtion. By omparing level sets relatedto di�erent levels one an �nd information on the shape of the density, also in highdimensional spaes. In partiular, we may look how the volumes and baryentersof level sets are hanging as a funtion of the level.We present the volume plot and the baryenter plot for visualization of densityfuntions. The volume plot visualizes the number and relative size of the modes ofthe density, and gives information on the kurtosis. With a mode we mean a loalextreme of the density and with size of a mode we mean the probability massassoiated with this loal extreme, that is, the exess mass of the loal extreme.The baryenter plot draws the �skeleton� of the funtion, visualizing loations ofthe modes and giving information on the skewness.We laim that even in ases where projetions may reveal the modes of theunderlying density, level set trees provide an easy to use exploratory methodwhih gives additional insight into the shape of the density. Furthermore, thereexist examples where one or two dimensional marginal densities do not reveal thetrue number of modes of the density. We show this by onstruting examplesof mixtures of Gaussian densities, where the omponents of the mixture are solose to eah other that all marginal densities show only few modes. For theseexamples level set trees however provide a method for �nding the number andloations of the modes.Level set trees provide a method for visualizing density estimates. Methodsfor making inferene whether loal maxima of a density estimate orrespond tothe modes of the underlying density has to be studied elsewhere. For visualiza-tion and inferene onerning the mode struture of one and two dimensionaldensities, see for example Minnotte and Sott (1993), Marhette and Wegman(1997), Minnotte, Marhette and Wegman (1998), Chaudhuri and Marron (1999),Godtliebsen, Marron and Chaudhuri (2002). Various mode testing proeduresare presented in Silverman (1981), Hartigan and Hartigan (1985), Müller andSawitzki (1991), Hartigan and Mohanty (1992), Mammen, Marron and Fisher(1992), Fisher, Mammen and Marron (1994), Minnotte (1997), and Davies and2



Kova (2001). Sine volume plots visualize exess masses assoiated with theloal extremes of the density, they help to make a judgement whether the loalextremes of an estimate orrespond to the true modes of the underlying den-sity funtion. Exess masses in mode detetion has been applied for example byMüller and Sawitzki (1991).In Setion 2.1 we de�ne level set trees for general multivariate funtions.In Setions 2.2 and 2.3 we de�ne volume plot and baryenter plot and disussbasi diagnostis with the help of these plots. In Setion 2.4 we disuss theomputational omplexity of alulating a level set tree. In Setion 3 we illustratethe level set trees used for visualizing histograms and kernel estimates. In Setion4 we give examples of the estimation of multimodal densities. Examples are 3and 4 dimensional mixtures of standard Gaussian densities. Setion 5 ontains asummary and disusses further work.Computations and graphis in this artile have been made with an R-pakagealled "denpro". This pakage may be downloaded from http://denstrut.net.2 De�nition of level set trees and level set plotsWe will de�ne the level set tree, de�ne the volume plot and the baryenter plot,disuss basi diagnostis whih an be made using these plots, and �nally disussthe omputational omplexity of alulating the level set trees in some typialexamples.2.1 De�nition of the level set treeThe funtion from whih we form the level set tree is assumed to be pieewiseonstant. Thus the funtion has a �nite number of distint level sets. The levelset tree is a tree whose nodes represent separated subsets of the level sets ofthe funtion. It is possible to de�ne a orresponding struture for ontinuousfuntions but we onsider only the disrete ase beause this ase is relevant forthe pratial alulation of level set trees.We say that the sets A, B ⊂ R
d are separated if inf{‖x−y‖ : x ∈ A, y ∈ B} >

0 where ‖ · ‖ denotes Eulidean distane. Thus, two sets are said to be separatedif there is some spae between them. We say that set A ⊂ R
d is onneted if foreah nonempty B, C ⊂ R

d suh that A = B∪C, sets B and C are not separated.Thus, a set is said to be onneted if it annot be written as a union of twoseparated sets.The level set tree may have an arbitrary �nite number of root nodes and everynode may have an arbitrary �nite number of hild nodes. Root nodes of the levelset tree orrespond to separated regions of the lowest level set of the funtion.The hild nodes of a given parent node orrespond to ertain separated regions ofthe level set whose level is one step higher than the level of the parent node. To3



every node we assoiate a real value and a set. The set assoiated with the nodeis the orresponding separated subset of the level set and the value assoiatedwith the node is the minimum value of the funtion on the set assoiated withthis node.Let f : S → R, S ⊂ R
d, be a funtion whose range is a �nite set:
{f(x) : x ∈ S} = {λ1, . . . , λN} (2)where λ1 < · · · < λN .De�nition 1 A level set tree is a multi-tree whose nodes are annotated withpairs (a, A), where a ∈ R and A ⊂ R

d. We all value a ∈ R the level of theorresponding node. We give a reursive de�nition of the level set tree of funtion
f satisfying (2).1) Write the lowest level set of funtion f as

Λλ1
= A1 ∪ · · · ∪ AMwhere Aj, j = 1, . . . , M , are pairwise separated and eah Aj is onneted (no

Aj an be further written as a union of two separated sets). Then the level settree has M root nodes and to these nodes we assoiate sets Aj and values aj =
min{f(x) : x ∈ Aj}, j = 1, . . . , M .2) Assume that we have a node of the tree for whih there is assoiated set A ⊂ R

dand value a ∈ R. If {x ∈ A : f(x) > a} = ∅, then this node does not havehildren. Otherwise, if {x ∈ A : f(x) > a} 6= ∅, write
{x ∈ A : f(x) > a} = B1 ∪ · · · ∪ BLwhere Bj, j = 1, . . . , L, are pairwise separated and eah Bj is onneted. Thegiven node has then L hildren with whih we assoiate sets Bj and values bj =

min{f(x) : x ∈ Bj}, j = 1, . . . , L.From now on we will assume that funtion f is a density. Then we maywithout loss of generality assume that λ1 > 0 (sine for densities we may withoutloss of generality assume that Λ0 = R
d). This implies that level set Λλ1

of f has�nite volume.We will illustrate the de�nition by an example. In Figure 1 we display adensity funtion whih takes 5 di�erent values and has two modes. In Figure2 we display the orresponding level set tree. Two modes of the funtion arerepresented as two branhes of the tree.The separated parts of the level sets whih we assoiate with the nodes of thelevel set tree usually have a omplex struture. Indeed, for a funtion f : R
d →

R, the level sets are subsets of R
d. Only in the three-dimensional ase, when

f : R
3 → R, we may sueed in diret visualization of these sets. Our strategy4
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b) function versionFigure 3: Volume plots of the funtion of Figure 1. Frame a) shows a tree versionand frame b) shows a funtion version.is to alulate ertain harateristis of the sets and use these harateristis invisualization. In this artile we utilize only volumes and baryenters of the setsassoiated with the nodes in visualizing the level set tree. The volume of a set
A ⊂ R

d is volume(A) =
∫

A dx and the baryenter of A isbaryenter(A) =
1volume(A)

∫

A
x dx.The baryenter is a d-dimensional vetor giving the �enter of mass� of a set. Weall volume plot a plot whih visualizes the volumes of separated parts of levelsets. We all baryenter plot a plot whih visualizes the baryenters.2.2 Volume plotThe standard tree plot of a level set tree as in Figure 2 visualizes the number ofloal extremes and the levels of those extremes. With volume plots we visualizethe importane of loal extremes in terms of the exess mass. Figure 3 showsexamples of volume plots. Figure 3 a) is a tree version of a volume plot andFigure 3 b) is a funtion version of a volume plot.Tree version of the volume plot. In the tree version of the volume plotnodes of the level set tree are represented as horizontal lines. The height of aline representing a node is determined by the level of the node (the level of theorresponding level set). The length of the line representing a node is proportionalto the volume of the orresponding set. The parent-hild relations are expressedby the left-right positioning of the nodes, so that the horizontal spae a hild6



node oupies is ontained to the horizontal spae oupied by the parent. Thisis possible, sine the sum of the volumes of the hild nodes is always less thanthe volume of the parent node.The left-right ordering of siblings (root nodes and the hild nodes of a givennode) may be done in various ways. We have applied the following rule in thisartile.1. Order �rst the root nodes. The leftmost root node is the one with the largestEulidean distane of the baryenter from the origin. After that, the nextnode is the one with the losest Eulidean distane of the baryenter fromthe baryenter of the previous node.2. The hildren of a node will be ordered by the same rule as the root nodeswere ordered.Above we used for simpliity the phrase "the baryenter of a node" when wemeant the baryenter of the set assoiated with the node.To show details in the upper levels of a volume plot we use a zoomed volumeplot, whih is a plot showing only the upper levels of the volume plot. Figure11 and Figure 13 in Setion 4 show examples of zoomed (funtion versions of)volume plots.Funtion version of the volume plot. We may assoiate one dimensionaldensity funtions with eah tree version of a volume plot. We all these one di-mensional density funtions volume plot transformations. Volume plot transfor-mations give ertain one dimensional representations of the multivariate density,whih are not any slies, marginal densities, or onditional densities of the origi-nal density. We may de�ne volume plot transformations in the following way: aone dimensional density is a volume plot transformation of the multivariate den-sity f , if it belongs to the equivalene lass of one dimensional funtions whosetree version of the volume plot is idential with the tree version of volume plotof f . This equivalene lass is losed with respet to translations (shiftings). Wewill always hoose the representative g from the equivalene lass whih is suhthat inf{t : g(t) ≥ 0} = 0. In addition, we hoose the representative whih is notskewed; that is, when a node of the level set tree of g has only one hild, thenthis hild has the same baryenter as the parent.Let us denote with vp(f) : R → R a volume plot tranformation of a mul-tivariate density f : R
d → R. We may justify the volume plot transformationwith the following 2 fats: (1) the level sets of vp(f) have as many pairwise sep-arated and onneted omponents as the level sets of f and (2) for all α ≥ 0,

∫

(f≥α) f =
∫

(vp(f)≥α) vp(f). The seond fat states that the exess masses of den-sities are equal for all levels. Fats (1) and (2) say together that vp(f) hasisomorphi mode struture with f . 7



The exess mass assoiated with a node of the level set tree. We maystate the mode isomorphism of f and vp(f) still in other way with the help ofexess masses. Exess mass may be assoiated with every node of a level settree. To de�ne the exess mass assoiated with a node we introdue the followingnotation. Assume that with node n of a level set tree are assoiated value a andset A. Then we write
n = (a, A), set(n) = A, val(n) = a.Furthermore, with parent(n) we mean the unique parent of node n. We say thata node is a deendant of node n if it is either a hild of n or a hild of an otherdeendant of n.De�nition 2 The exess mass assoiated with node n of the level set tree ofdensity funtion f is de�ned byexmass(n) =

∫set(n)
(f(x) − val(parent(n))) dx

=
∑

{volume(set(n0)) · [val(n0) − val(parent(n0))] :

n0 = n or n0 is a deendant of n} , (3)where density f satis�es (2) with λ1 > 0. For the ase that n is a root node, wedenote val(parent(n)) = 0.In words, the exess mass is the volume of the area whih the funtion delineatesover a given level, in a given branh of the level set tree. When a level set tree hasonly one root node, then the exess mass of this root node is equal to one. Exessmasses of the other nodes are frations of the total probability mass. We statethe mode isomorphism of f and vp(f) in the following way: the level set trees of
f and vp(f) are isomorphi and exess masses assoiated with the orrespondingnodes of these trees are equal. Exess masses has been applied in luster analysisand mode testing for example by Hartigan (1987), Müller and Sawitzki (1991),Minnotte (1997).Diagnostis on kurtosis. By omparing volumes of level sets at di�erent levelswe may get information about the kurtosis. If the volumes of level sets aredereasing fast when we move to the level sets orresponding to higher levels,this may indiate that the density has sharp peaks.2.3 Baryenter plotsThe baryenter plot draws the �skeleton� of the funtion, visualizing loations ofthe modes and giving information on the skewness. Figure 4 shows an exampleof a baryenter plot. 8
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1-dimensional urve bc : [0, M ] → R
d, bc(α) = baryenter(Λα), in d-dimensionalspae, where M = supx∈Rd f(x) < ∞ and Λα is the level set de�ned in (1). Inthe general multimodal ase Λα may have many separated omponents and thebaryenter plot visualizes the mapping bc : [0, M ] → (Rd)∞, bc(α) = (b1, . . . , bl)where bi ∈ R

d is the baryenter of the ith separated omponent of Λα.To identify the nodes between di�erent windows of a baryenter plot (andbetween volume plots and a baryenter plot) we label the modes. The labelingof modes will uniquely determine the orrespondene of all nodes in di�erentwindows. However, to ease the identi�ation of nodes aross di�erent windows,we will also olor the nodes. We will �rst hoose distint olors for the leaf nodesand then travel towards the root nodes, by hanging the olor always when twobranhes are merging. We will also olor the lines joining a hild and a parent.The olor of a line will be the same as the olor of the hild node whih is at thehild end (upper end) of the line. This printed version of the artile shows theolors only in gray sale. 9



Diagnostis on skewness. If the baryenters of the level sets are not the samefor di�erent levels, this may indiate skewness of the funtion. In Figure 4 onemay note the slight skewness of the branh leading to the mode labelled as M1,by noting the hange of x-oordinate of baryenters as the level grows.2.4 Computational omplexityAlgorithms for �nding the level set tree depend on the underlying funtion. How-ever, one may formulate some algorithms whih apply for a number situations.In this artile we onsider density estimators whose level sets may be writtenas unions of a �nite number of onneted sets whih belong to a basi library of�atoms�. Level sets of histogram estimates are unions of bins. A kernel estimatemay be approximated by alulating its values at gridpoints, and forming a piee-wise onstant funtion whih is onstant over the retangles whose enters arethe gridpoints. Then these retangles entered at the gridpoints form the libraryof atoms.The main step in algorithms for forming the level set tree is to �nd the maxi-mally separated regions of a given (part of a) level set. That is, we want to �nd apartition of the level set to pairwise separated sets, where eah set is onneted.A naive algorithm for deomposing a level set, whih is a union of atoms, to thepairwise separated onneted omponents is based on pairwise omparisons ofatoms to �nd whih atoms touh eah other.More preisely, for a given atom A we �nd all atoms whih touh atom A andput these atoms to a stak. We pull atoms from the stak one at a time and �ndatoms whih touh this atom pulled from the stak, and put also these atomsto the stak (unless they were already enountered). Continuing in this way aslong as the stak is not empty we �nd the separated onneted omponent whoseone member is atom A. This proedure must be repeated for all atoms not yetassoiated to some omponent.Let us analyze the omplexity of �nding the level set tree for the ase in whihwe apply the naive algorithm for �nding the separated onneted omponents oflevel sets. Assume that the given estimate has Q di�erent level sets and everylevel set is a union of at most N atoms. For eah level set, naive algorithm makesat most N(N − 1) tests between atoms to �nd whih atoms touh eah other.In our examples testing whether two atoms touh eah other takes d steps, when
d is the dimension of the Eulidean spae where the estimate is de�ned. Then,under these assumptions, onstrution of the level set tree from the estimate willtake

O
(

QN2d
) (4)steps.For the ase of the histogram estimator the naive algorithm is feasible. Forthe ase of a kernel estimate evaluated on a grid this algorithm is not feasible,10



sine the multivariate grid with the help of whih we approximate the kernel esti-mate may ontain a huge number of knots. One may develop more sophistiatedalgorithms whih are based on a dynami programming algorithm, whih �ndssolutions for spatially loal subsets of the support of the estimate, and builds theglobal solution from the previously found solutions to the loal problems. Thiskind of algorithm is desribed in Klemelä (2005).3 Level set trees from histograms and kernel esti-matesWe will onsider visualization of histogram and kernel estimates with level settrees.3.1 Histogram estimatorWe onstrut histogram estimates by �rst �nding minimum and maximum valuesof every variable, onstruting the retangle whose verties are these minima andmaxima, onstruting bins by dividing every side of the retangle into an equalnumber of intervals, and �nally ounting the number of observations in eah bin.Figure 5 shows examples of two dimensional histograms. These histograms areonstruted from a sample of size 200 from a density, whih is an equal mixtureof three standard Gaussian densities. The three omponents of the mixture are
N(µi, I), i = 1, 2, 3, where µ1 = (0, 0), µ2 = (0, 4), µ3 = (4, 0), and I is 2 × 2unit matrix. Figure 5 shows two histograms with 82 and 132 bins. On the lefthand side we show perspetive plots and on the right hand side volume plots. InFigure 6 we show baryenter plots for the two histograms.Note that although the main appliation of level set trees is for the aseswhere dimension is higher than 2, we may also apply level set trees to highlightthe number of loal maxima of the estimate, whih is often not easy to see from aperspetive plot of a histogram. The histogram of Figure 5 b) has 7 loal maxima,whih an be seen from the volume plot and from the baryenter plot.It is feasible to onstrut level set trees from histograms with the algorithm ofSetion 2.4. The number of bins gives an upper bound for the number of "atoms"of the level sets. The normal referene rule for the number of bins suggests thatthe number of bins should be hosen as N ≍ nd/(2+d), see Sott (1992), page 82.3.2 Kernel estimatorDe�ne the kernel estimator based on data X1, . . . , Xn ∈ R

d by
fn(x) = (nhd)−1

n
∑

i=1

K((x − Xi)/h), x ∈ R
d,11
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b.2) 13 bins, y−coordinateFigure 6: Baryenter plots from the histograms in Figure 5where h > 0 is the smoothing parameter and K : R
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Figure 7: Kernel estimates with smoothing parameters a) h = 1.4, b) 0.8, and) 0.6. On the left perspetive plots and on the right volume plots. We have 80levels and 64 gridpoints for both diretions.
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Figure 9: Tetrahedron with verties m1, m2, m3, and m4. Distane betweenverties is D.the number of gridpoints needed to approximate aurately a kernel estimate ishuge in multivariate ases. Klemelä (2005) desribes a dynami programmingalgorithm for �nding the separated omponents of level sets of a kernel estimate.4 ExamplesWe will give examples from estimation and visualization of mixtures of Gaussiandensities. We onsider 3 and 4 dimensional mixtures whose omponents are loseto eah other.4.1 Three dimensional exampleWe onsider an equal mixture of standard Gaussian densities. The means of theomponents of the mixture lie on the verties of a tetrahedron. We hoose asmeans
m1 = D × (1/2, 0, 0),

m2 = D × (−1/2, 0, 0),

m3 = D × (0,
√

3/2, 0)

m4 = D × (0, 1/(2
√

3),
√

2/3).Points mi lie on the verties of a tetrahedron and the distane between vertiesis D. See Figure 9.When we hoose D su�iently small then two dimensional projetions do notreveal the modes of the density. In Figure 10 a)-) we show marginal densitieson the three oordinate planes of R3 when D = 3. One an see that there are nobetter projetions than the oordinate planes. When the distane between theomponents of the mixture is large, then the projetion to x-y-plane reveals all 4modes: in Figure 10 d) we show the marginal density on x-y-plane when D = 4.16



a) b)

c) d)

Figure 10: Marginal densities of a mixture of 4 standard Gaussian densities in
R

3; a) x-y plane, D=3; b) x-z plane, D=3; ) y-z plane, D=3; d) x-y plane, D=4.
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For the simulation example we hoose distane between modes D = 3. Whenthe sample size is su�iently large, then 3-dimensional histogram �nds all 4modes of the underlying density, even when marginal densities do not reveal themodes.In Figure 11 we present a histogram, based on a sample of size 5000. We hose9 bins for eah diretion. The mode labelled M1 has the largest exess mass.The baryenter plots in Figure 11 reveal that the loations of the modes ofthe estimate are not too far from the loations of the modes of the true density.In fat, the loations of the modes are
M1 = (−0.02, 1.1, 2.1) ≈ m4 = (0, 0.9, 2.4),

M2 = (−0.02, 3.2, 0.2) ≈ m3 = (0, 2.6, 0),

M3 = (−1.0, 0.04, 0.2) ≈ m2 = (−1.5, 0, 0),

M4 = (1.0, 0.04, 0.2) ≈ m1 = (1.5, 0, 0).By M1-M4 we denote the baryenters of the sets where the histogram estimateahieves a loal maximum.4.2 Four dimensional exampleWe onsider an equal mixture of standard Gaussian densities. The means of theomponents of the mixture lie on the verties of a pentahedron. We hoose asmeans
m1 = D × (1/2, 0, 0, 0),

m2 = D × (−1/2, 0, 0, 0),

m3 = D × (0,
√

3/2, 0, 0),

m4 = D × (0, 1/(2
√

3),
√

2/3, 0),

m5 = D × (0, 1/(2
√

3), 1/(2
√

6),
√

15/24).Points mi lie on the verties of a pentahedron and the distane between vertiesis D. When we hoose mi su�iently lose to eah other, then two dimensionalprojetions do not reveal the modes of the density. In Figures 12 a)-f) we showmarginal densities on the six oordinate planes of R
4 of the equal mixture ofstandard Gaussian densities, with D = 4. We denote oodinate diretions by

(x, y, z, u). Even when the distane between omponents of the mixture is large,there exists no projetion to the oordinate planes that would reveal all 5 modesat one.For the simulation example we hoose distane between modes D = 4 andsample size 2000. We present in Figure 13 a kernel estimate with h = 1 andBartlett-Epanehnikov produt kernel. We quantized to 40 levels and evaluated18
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a) b) c)

d) e) f)Figure 12: Marginal densities of a mixture of 5 standard Gaussian densities in
R

4, when D = 4; a) x-y plane; b) x-z plane; ) x-u plane; d) y-z plane; e) y-uplane; f) z-u plane.the estimate at 164 gridpoints. With only 16 gridpoints in eah diretion thekernel estimator is still more aurate than the histogram estimator.The loations of the modes of the estimate in Figure 13 are
M1 = (0.2, 0.7, 0.9, 3.1) ≈ m5 = (0, 1.2, 0.8, 3.2),

M2 = (0.2, 1.4, 3.2,−0.3) ≈ m4 = (0, 1.2, 3.3, 0),

M3 = (2.2, 0.4, 0.2,−0.3) ≈ m1 = (2, 0, 0, 0),

M4 = (0.2, 3.4,−0.6,−0.3) ≈ m3 = (0, 3.5, 0, 0),

M5 = (−1.8, 0.02, 0.2, 0.4) ≈ m2 = (−2, 0, 0, 0).One an see that the loations of the modes of the estimate are not too far fromthe loations of the modes of the true density.5 Summary and further work5.1 SummaryStudying level sets for a series of levels provides information on the shape ofa multivariate funtion. Level sets has been applied in density estimation andmode detetion in 3 and 4 dimensional ases by Sott (1992) and Härdle and Sott(1992), who present a sliding tehnique for visualizing 4 dimensional funtions.20
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They visualize 3D density ontours as the fourth variable is hanged over itsrange.Our aim is to apply level sets in arbitrary dimension with the help of levelset trees. Level set trees are omplex objets whih give an alternative way torepresent funtions. This representation is however fruitful for visualizing manyfeatures of funtions. We are not able to make a single visualization whih wouldwithout loss of information visualize a multivariate funtion. Instead, we makea number of visualizations and eah plot visualizes one aspet or feature of theoriginal funtion. Our approah is an alternative to the approah of projeting thedata to a low dimensional spae. Studying projetions and marginal densities isin many ases su�ient but projetions may hide some high dimensional features.In density estimation we are interested how the probability mass is distributedover the d-dimensional Eulidean spae. Loal extremes of the density funtionexpress onentration of the probability mass. We are interested both in visual-izing the loations of these loal extremes, and also in visualizing the size of theprobability mass assoiated with eah loal extreme. To ahieve these aims wehave introdued the volume plot, whih visualizes the amount of probability massassoiated with eah loal extreme, and the baryenter plot, whih visualizes theloations of these probability masses. The volume plot de�nes a one dimensionaltransformation for multivariate densities, whih is not any slie, onditional den-sity, or marginal density of the original density.5.2 Further workIn one and two dimensional ases the art of smoothing onsists often in theinspetion of the hanges of the estimate as the smoothing parameter of theestimate hanges. Formal tools to help this proess has been given for exampleby Minnotte and Sott (1993), Minnotte (1997), Chaudhuri and Marron (1999).The graphial representations of level set trees may be utilized to extend versionsof these tools to higher than 2 dimensional ases.We have applied only volumes and baryenters in this artile. Other poten-tially useful harateristis of sets inlude diameter, perimeter, radius (minimum,maximum, average), and ompatness (ratio of the perimeter to the volume).It is also interesting to apply level sets to visualize other multivariate fun-tions than density funtions. For example, it is important to detet modes fromregression funtions. Baryenter plots may be applied to detet monotone be-haviour of a funtion with respet to some variables, whih is often of interest inregression funtion estimation.Cluster analysis. Aording to Hartigan (1975), page 205, lusters are regionsof high density separated from other suh regions by regions of low density. Thuslusters are separated subsets of some level set {x ∈ R
d : f(x) ≥ α} of theunderlying density funtion f . 22
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